
Tissue Engineering and Regenerative Medicine

Concise Review: Cell-Based Strategies in Bone Tissue
Engineering and Regenerative Medicine

JINLING MA,a,b SANNE K. BOTH,b FANG YANG,b FU-ZHAI CUI,c JULI PAN,a,d GERT J. MEIJER,e

JOHN A. JANSEN,b JEROEN J.J.P. VAN DEN BEUCKENb

Key Words. Mesenchymal stem cells x Endothelial cells x Bone marrow stromal cells x
Adipose stem cells x Vascularization x Tissue regeneration

ABSTRACT

Cellular strategies play an important role in bone tissue engineering and regenerativemedicine (BTE/
RM). Variability in cell culture procedures (e.g., cell types, cell isolation and expansion, cell seeding
methods, and preculture conditions before in vivo implantation) may influence experimental out-
come. Meanwhile, outcomes from initial clinical trials are far behind those of animal studies, which
is suggested to be related to insufficient nutrient and oxygen supply inside the BTE/RM constructs as
some complex clinical implementations require bone regeneration in too large a quantity. Coculture
strategies, in which angiogenic cells are introduced into osteogenic cell cultures, might provide a so-
lution for improving vascularization andhence increasingbone formation for cell-based constructs. So
far, preclinical studies have demonstrated that cell-based tissue-engineered constructs generally in-
ducemore bone formation comparedwith acellular constructs. Further, cocultures have been shown
toenhancevascularizationandbone formation comparedwithmonocultures.However, translational
efficacy from animal studies to clinical use requires improvement, and the role implanted cells play in
clinical bone regeneration needs to be further elucidated. In view of this, the present reviewprovides
an overviewof the critical procedures during in vitro and in vivo phases for cell-based strategies (both
monoculture and coculture) in BTE/RM to achieve more standardized culture conditions for future
studies, and hence enhance bone formation. STEMCELLS TRANSLATIONALMEDICINE 2014;3:98–107

INTRODUCTION

Bone is one of themost transplanted tissues, with
more than 2.2 million bone graft procedures
being performed annually worldwide [1]. Bone
tissue engineering/regenerative medicine (BTE/
RM) approaches, with the triad principle of apply-
ing combinations of the three building blocks:
supporting scaffolds, growth factors, and func-
tionally active cells to (re)generate biologically
functional tissues, have been suggested as prom-
ising strategies to regenerate bone [2].

The potential of BTE/RM constructs becomes
especially challenging under compromised condi-
tions, such as in elderly patients with suboptimal
medical conditions (e.g., osteoporosis, diabetes,
and cancer), or in cases in which the bone defect
dimensions are (far) beyond those that can spon-
taneously heal. Consensus on the difficulty of
healing bone defects under such conditions illumi-
nates that the bone regenerative capacity arising
from only a scaffold material is often insufficient,
and that additional BTE/RM approaches should
arise frompreseeding the scaffoldwith cells or in-
corporating growth factors within the scaffolds.
Small successes have been reported for in vitro
experiments and even animal studies with cell-
laden scaffolds, but translation of these results

to the clinic for bone regenerative applications
has been insignificant so far [3]. Several issues
can be attributed to the lack of this clinical suc-
cess. First, the quality and quantity of the used
cells and the preculture conditions after cell seed-
ing onto the scaffolds are variable and limited,
and tiny variations within these procedures may
substantially influence theoutcome. Second, cells
within a construct are subjected to inflammatory
conditions and limited nutrient supply on implan-
tation because surgical intervention generates
tissue damage and the diffusion of nutrients
and oxygen from the nearest capillary is limited
to only 150 mm to 200 mm [4]. Researchers have
pointed out that rapid vascularization into cell-
basedBTE/RM-constructs is pivotal to clinical suc-
cess [3]. Froma cellular point of view, the solution
for insufficient vascularization is either coculture
of osteogenic cells with angiogenic cells [5] or
changing the priming differentiation pathway of
stem cells (SCs) fromosteogenic to chondrogenic,
because cartilage is an avascular tissue with less
susceptibility to limited vascularization [6].

The aim of this review is to summarize the
current state-of-the-art in cell-based BTE/RM in
terms of critical procedures and efficacy ofmono-
culture (osteogenic) and coculture approaches.
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Although the authors are aware of the major importance of scaf-
fold properties and the potential of growth factor incorporation
and release, the intention is to focus on the cellular component in
BTE/RM approaches, and hence critically review the experimen-
tal, preclinical, and clinical efforts on this topic.

CRITICAL PROCEDURES

To restore bone defects in clinical applications, some critical
issues that are inherently related to the cell quality and quantity
(e.g., cell types/sources, cell isolation, and yield), cell seeding ef-
ficiency andpreculture conditionsmust be considered, and finally
in vivo conditions should be taken into consideration.

Stem Cell Sources

Asource of human cells that canbederived in large numbers from
a small and easy initial harvest and can differentiate into bone-
forming cells is preferable for cell-based BTE/RM constructs [7].
Various cell types have been explored for BTE/RM, each with
its own potential and premise.

Nonadult SCs

Nonadult SCs contain two categories: embryonic stemcells (ESCs)
and SCs isolated fromperinatal tissue, such as aborted fetal tissue
and discarded tissue at birth (e.g., umbilical cord and placenta).
ESCs are pluripotent, but consistency on bone formation capacity
by ESCs progeny has not been achieved [8, 9] and ethical issues
exist. The latter category, positioned between embryonic and
adult SCs, ismultipotent SCs. These cells have similar bone forma-
tion capacity comparedwith adultmesenchymal SCs (MSCs) [10].
Nevertheless, that they can form tumors [11] on in vivo implan-
tation makes the use of these cell types controversial.

Adult SCs

Adult MSCs play a predominant role in the field of BTE/RM. The
most common sources are bone marrow (BM), adipose tissue
(AT), and dental pulp (DP).

BM-MSCs

BM is the predominant source for adult MSCs. BM-derived MSCs
(BM-MSCs) have multipotential differentiation capacity, includ-
ing osteogenic potential, and can perform pericyte-like functions
by secreting both angiogenic and stabilization factors in the pro-
cess of vessel formation [12]. Although BM-MSCs arewidely used
in laboratory and preclinical studies, they have several disadvan-
tages, including donor site morbidity and side effects, limited
proliferation capacity, and inferior differentiation potential in
aged individuals [13]. Thus, alternatives to BM-MSCs have been
explored.

AT-MSCs

AT is a popular alternative source for MSCs because of easy and
less invasive harvest procedures and larger yield compared with
BM [14]. AT-derived MSCs (AT-MSCs) are similar to BM-MSCs re-
garding gene expression and osteogenic capacity [15] and can
also exert pericyte-like functions [16]. Nevertheless, the bone-
forming capacity of AT-MSCs needs further confirmation, and
whether AT-MSCs exhibit bone-forming capacity similar to that
of BM-MSCs is still controversial. Moreover, preclinical safety

and efficacy as well as long-term in vivo studies are required be-
fore AT-MSCs can be evaluated clinically.

DP-MSCs

The noninvasive manner of obtaining DP from deciduous/
extracted teeth or even nonextracted crown fractured teeth
makes it an ideal source for MSCs. DP-derived MSCs (DP-MSCs)
have similar gene expression, a faster proliferation rate, and
a higher percentage of SCs in the harvested population compared
with BM-MSCs [17] and express pericyte markers [18]. Some
researchers have reported that DP-MSCs have at least equal
bone-forming capacity compared with BM-MSCs [19, 20], and
others showed only the formation of connective tissue [21] or
dentin pulp-like complex formation [22] from DP-MSCs, suggest-
ing the requirement for in-depth studies on the mechanism of
bone-forming capacity by DP-MSCs.

Isolation and Expansion

High-quality cells in relevant quantities are often crucial to satisfy
clinical demand (i.e., the successful restoration of a bone defect).
To achieve this, effective cell isolation andexpansion of harvested
cells are of utmost importance. Inadequate isolationmethods can
lead to polluted isolates and hence inconsistency in cell marker
expression [23]. Further, long-term expansion has demonstrated
decreased stem cell proliferation and differentiation capacity
[24]. Nevertheless, a broadly accepted protocol has not been
established for isolation and large-scale expansion of human
MSCs, which also makes the comparison among reported results
from publicly available databanks difficult.

Isolation of BM-MSCs, AT-MSCs, and DP-MSCs

The isolation ofMSCs is a general procedure, meaning tissue har-
vesting and treatment (mincing and/or enzymatic digestion),
washing, filtering and centrifugation, and plating. BM-MSCs can
be obtained from either bone chips (cortical or trabecular bone)
or BM. The SCs isolated from these two sources have been shown
to be identical in terms of phenotype and multilineage differen-
tiation capacity [25]. AT-MSCs can be isolated from a resected ad-
ipose block or lipoaspirate. The latter method is easier because
lipoaspirate consists of finely minced fat fragments with less vol-
ume and a more homogeneous population of cells. Isolation of
MSCs from DP basically relies on two methods. The first one is
the outgrowth method (i.e., cell migration out of the pulp frag-
ments and adherence to cell culture plates), which is rarely ap-
plied because it takes substantially longer to obtain similar cell
numbers compared with enzymatic digestion. This latter method
is comparable to the earlier mentioned digestion method for BM-
MSCs (Fig. 1). Bone chips, resected AT, and DP tissue require minc-
ing,whereasBMand lipoaspirateproceeddirectly to awashingpro-
cedure. After washing, enzymatic digestion is performed for all the
tissues exceptBMaspirates followedby filtering andgradient den-
sity centrifugation. The isolated cells are plated for adhesion-
dependent selection. To increase the purity of the isolated cells,
cell separation methods such as cell sorting using cell surface
markers (e.g., CD73,CD105, andStro-1) are frequentlyused (Fig.1).

Expansion of BM-MSCs, AT-MSCs, and DP-MSCs

For expansion, essential culture parameters comprise the type of
basic culturemediumand thenutritional source (e.g., serum), cell
passaging density, and doubling numbers. a-minimum essential
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medium (a-MEM) is the optimal bare culture medium for isola-
tion and expansion of human BM-MSCs [26], AT-MSCs [27, 28],
andDP-MSCs [29, 30].Humanserum[31]orhumanplatelet lysate
(PL) [32–34] has been explored as a replacement for fetal bovine
serum (FBS) because FBS carries potential hazards related to bo-
vine pathogens and immunological issues. No consensus regard-
ing optimal cell-seeding density for expansion exists, although
low-density cell seeding has been recommended (e.g., for BM-
MSCs, 50∼100, or 1,000 cells per cm2 for expansion; for AT-MSCs,
100∼200 cells per cm2, and for DP-MSCs, 800∼1,000 cells per cm2)
because this is associatedwith higher proliferation rates [26, 35, 36].

Small variations within each step of an isolation procedure,
including enzyme type and enzymatic digestion time, centrifuga-
tion speed and time, or washing liquid (either phosphate-
buffered saline or sodium saline), may change the quality and
quantity of the isolated SCs and hence influence the experimental
outcomes. Additionally, the site of tissue harvest can influence
the phenotype of the isolated SCs [37], the percentage of SCs
in thewhole population [38], and their osteogenic differentiation
capacity [39]. However, this review did not reach any significant
conclusionaboutstandardizedandoptimizedSCisolationandexpan-
sion procedures, which sheds light on the need for relative studies.

Cell-Seeding Techniques and Preculture on Scaffolds

Cell seeding and preculture on scaffolds are essential procedures
before in vivo implantation. Seeding requirements for cell-based
BTE/RM constructs for potential clinical use should allow maxi-
mized utilization of donor cells, minimal time for anchorage-
dependent and shear-sensitive cells (e.g., osteoblasts) in suspen-
sion, and spatially uniform distribution of attached cells [40].

Cell-Seeding Efficiency

Cell-seeding efficiency, which might further correlate with bone-
forming capacity, can be increased by either selecting proper
scaffolds and modifying the scaffold surface or by optimizing
cell-seeding methods. For the former method, the criteria for
three-dimensional scaffolds are explored in tandemwith proper-
ties such as porosity, interconnectivity, biodegradability, andme-
chanical integrity. As such, diverse formsof scaffolds (e.g., bulk vs.
hydrogels; fibrous vs. foam) with different components (e.g., pol-
ymers, ceramics, andmetal) have been explored. Various scaffold
properties affect cell-seeding efficiency; for instance, scaffolds
that have more regular and homogeneous pores and are more

accessible for the cell suspensionduringdrop seeding havehigher
cell-seeding efficiency (e.g., a fiber deposited vs. a foam scaffold)
because they avoid cell aggregate entrapment in the small and
irregular internal pores [41]. Furthermore, scaffold surfaces can
be modified through pretreatment with adhesive proteins (e.g.,
preimmersion in serum or fibronectin). For the latter method,
cell-seeding volume and cell-seeding time affect cell-seeding ef-
ficacy aswell as cell viability significantly [41].Moreover, the com-
binationof lowpressure (vacuum)with vibration canhelp remove
potential air bubbles around scaffolds and allow more cells to
penetrate deeply into the scaffolds to enhance bone formation,
especially for porous scaffolds, in comparisonwith the commonly
used static seedingmethods [42]. Additionally, dynamic cell seed-
ing (e.g., perfusion bioreactor) has shown to yield higher cell-
seeding efficiencies andmore homogenous cell distribution com-
pared with static cell seeding [43].

Cell-Seeding Density and Medium Perfusion

Cell proliferation after cell seeding ismainly regulated by contact-
inhibition between adjacent cells, which is determined by cell
seeding density [44] and nutrient transfer efficiency as a result
of themediumperfusion rate, which also determines cell viability
[45].

Initial seeding density can alter the expression of osteogenic
genes by controlling the distance of paracrine signals among cells.
Although no systematic studies on the optimal cell-seeding den-
sity are available because of the variety of scaffold properties
(Table1), it hasbeenagreed that a certain thresholdof cell density
is essential to achieve successful bone regeneration in vivo. Low
seeding densities may compromise cellular contact and hence in-
fluence bone formation, and high seeding densities do not neces-
sarily benefit cell behavior because the overloaded cells may
result in limited nutrient transport and insufficientwaste removal
from the internal structures [46]. In general, below a certain
threshold (i.e., the optimal density), osteogenic marker expres-
sion and extracellular matrix production (i.e., mineralization)
capacities are enhanced with increasing cell-seeding density. In
contrast, when the cell-seeding density exceeds this optimal den-
sity, a further increase in cell-seeding density can reduce thebone
regenerative capacity of cells [46].

Medium perfusion is increased in dynamic cultures using bio-
reactor systems, leading toan improvednutrientdelivery andme-
chanical stimulation to the cells as well as enhanced osteogenic
differentiation compared with static cultures [47]. Three classes
of bioreactor systems have been widely used in BTE: spinner
flasks, rotating wall, and perfusion systems. Each of these has
proven effective to culture cells for BTE. Perfusion systems have
been shown to perfusemedia effectively throughout the scaffold
rather than creating only a homogenous media solution on the
exterior of a scaffold [48].

Predifferentiation of Cells

Predifferentiation of the cells into osteogenic [49, 50] or chondro-
genic lineage [6, 51] before in vivo implantation has been as-
sumed essential for enhancing osteogenesis in vitro and in vivo
in comparison with nonpredifferentiated (i.e., osteogenic or
chondrogenic) cells. However, the optimal preculture time for
bone regeneration is either controversial (for osteogenic differ-
entiation) or lacking (for chondrogenic differentiation). Short
osteogenic induction is probably insufficient for inducing cell

Figure 1. Scheme for isolation of mesenchymal stem cells derived
frombone, adipose tissue, anddental pulp.Abbreviations: FACS, fluo-
rescence activated cell sorting;MACS,magnetic activated cell sorting.
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differentiation,whereas longdurationosteogenic induction leads
toanapoptotic process [52]. Longerpreculture time (2weeks)has
been shown to induce more bone formation compared with
shorter time (1 week) for both human BM-MSCs [53] and human
AT-MSCs [54]. From a clinical point of view, one-step surgical
techniques, in which freshly isolated cells (without expansion)
are used directly within the operation theater, are recommended
for clinical applications of cell-based bone regenerative strategies
[55]. This suggests that a balance is needed between the bone re-
generation efficacy caused by the relatively longer preculture time
and the benefits that patients gain from the one-step surgery.

The aforementioned seeding techniques and preculture con-
ditions (formonocultures) are alsoused for cocultures. Additional
parameters should be considered for cocultures, including choice
of cell origin and cell type, culture medium, and cell ratio. The
effects of origin of eitherMSCs (e.g., BM-MSCsor AT-MSCs) or an-
giogenic cells (e.g., ECs, endothelial progenitor cells [EPCs]) need
further investigation. Furthermore, it should be noted that cellu-
lar communication in cocultures is cell-type specific. For instance,
whenECswere replacedbyprimary chondrocytes or fibroblasts in
osteoblasts/ECs coculture, no increasing effects on alkaline phos-
phate activity were observed [56]. The culture medium used in
cocultures is different depending on the research aims (i.e., angio-
genesis or osteogenesis). EC culturemedium (EM) has been shown
to bemore suitable for vessel formation and stabilization, whereas
osteogenic medium (OM) has been shown to favor osteogenic dif-
ferentiation ofMSCs [57]. It was reported recently that more bone
formation was observed for cells cocultured continuously in OM
comparedwith sequential culturemediumvariations (e.g., first cul-
turing cells in EM and subsequently in OM) before in vivo implan-
tation [58]. Further, it was recently shown that BM-MSCs/ECs
cultured in OM achieved higher mineralization while maintaining
angiogenic capacity in vitro [5]. This indicates that OM may be
a more optimal culture medium for cocultures for future research
on bone regeneration capacity of such cell-based constructs. A cell
ratio of 1:1 is often chosen in cocultures, which was also demon-
strated recently as optimal for both BM-MSC/EC [5] and AT-
MSC/EC [59] cocultures.

One of the crucial aspects of BTE/RM is the evaluation/
prediction of bone healing capacity for the tissue-engineered con-
structs. To further test such bone-forming efficacy, in vivo studies
including both preclinical research and clinical trials are necessary.

Preclinical Studies

Monocultures

Because MSCs from humans (rather than other animal cell
source) are the cell type essential for future clinical application,
and orthotopic implantation (i.e., bony defects) is the preferred
model to mimic the clinical situation compared with ectopic im-
plantation sites, a literature review on preclinical studies using
BM-MSCs, AT-MSCs, and DP-MSCs of human origin for repair of
bony defects was performed in PubMed. A total of 13 such pre-
clinical studies were available, among which 7 included BM-
MSCs, 6 included AT-MSCs (including one paper studying both
BM-MSCs and AT-MSCs), and 1 included DP-MSCs (Table 1).
For human BM-MSCs, three studies used rat cranial defects,
one used mouse cranial defects, one used sheep tibial defects,
and twoused rat femoral defects. For humanAT-MSCs, four stud-
ies used rat cranial defects, one used mouse cranial defects, and
one used rat femoral defects. For human DP-MSCs, the only

available study used rat parietal bone defects. Cell-based con-
structs demonstrated more efficacy in restoring bone defects in
comparison with cell-free constructs, with a fold range of 1.4 to
3.8, 1.6 to 4.0, and 1.8 comparedwith cell-free control constructs
for BM-MSCs, AT-MSCs, and DP-MSCs, respectively.

Cocultures

Although animal studies confirmed the capability of cell-based
constructs to form bone and integrate with the host tissues,
the repair efficacy could be more promising once the key hurdle
of insufficient vascularization can be overcome, which would re-
quire clinically sized, fully viable bone grafts to be engineered and
implanted. A 50% loss of viable cells in monoculture cell-based
constructs, as shown by the presence of apoptotic cells, was ob-
servedwithin two days after implantation in vivo [60], most likely
because cells encountered an ischemic and inflammatory envi-
ronment [3]. In view of this, coculture approaches have shown
advantages inbothvascularization andbone formation compared
with monocultures (Table 2). Currently, six preclinical studies
have been reported on orthotopic implantation using tissue-
engineered constructs seededwith cocultures usinghumanMSCs
(i.e., four for BM-MSCs, two for AT-MSCs, and none for DP-MSCs)
(Table 2). For human BM-MSCs, one study used rat cranial
defects, two used rat femoral defects, and one used rabbit ulna
defects. These studies demonstrated a range fold of bone-
forming efficacy of 1.2 to 1.4 (cocultures compared with MSCs
monocultures) and vessel-forming efficacy of 1.0 to 10.0 (com-
pared with MSCs monocultures) or 2.5 to 2.7 (compared with
ECs/EPCs monocultures). For human AT-MSCs, the studies dem-
onstrated a range fold of bone-forming efficacy of 0.3 to 1.3
(cocultures comparedwithMSCsmonocultures). Although cocul-
tures of human DP-MSCs with ECs have been shown to enhance
osteogenic and angiogenic potential in vitro [61], in vivo studies
using DP-MSCs in coculture approaches are still lacking.

Fate of the Implanted Cells

After in vivo implantation, the fate/contribution of the seeded
cells (both MSCs and ECs/EPCs) and the possible mechanisms
of their bone-forming (for MSCs) or vessel-forming (for ECs/
EPCs) capacity have been explored. The seeded MSCs can prolif-
erate and differentiate into osteogenic lineages to contribute di-
rectly to bone formation [62, 63] and have the potential to recruit
cells from the host, which can be MSCs [64] or ECs/EPCs [64, 65],
to induce/enhance bone formation indirectly. Similarly, implanted
EPCs may also act in this way on bone formation by either forming
stable vasculature through coculturingwithMSCs [66]orby secret-
ing chemotactic factors (e.g., vascular endothelial growth factor) to
recruit ECs/EPCs from the host and thereby stimulate vasculariza-
tion in bone defects [67]. Several studies have shown the synergis-
tic contribution to bone formation [68] as well as vessel formation
[69]ofbothdonorandhostcells.Mostof thestudiesdemonstrated
that bone [14, 70] and blood vessel formation [69, 71] weremainly
from the implanted donor cells.

Clinical Studies

MSCs have been used in clinical trials in various fields of RM
such as treatment of graft versus host disease, diabetes mellitus,
amyotrophic lateral sclerosis, and liver failure. However, to our
knowledge, human clinical trials addressing cell-based constructs
for bone repair are limited to case reports (Table 3), which
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emphasizes theneed for randomized control trials and systematic
clinical studies. The available case reports cover long bone
defects, jaw defects, alveolar cleft regeneration, and sinus aug-
mentation. A search on clinicaltrials.gov using a combination of
search terms revealed 24 relevant studies. Eight studies included
the terms “bone marrow derived mesenchymal stem cells” AND
“bone.” Two studies included the terms “adipose tissue derived
mesenchymal stem cells” AND “bone.” No studies included the
terms “dental pulp stem cells” AND “bone.” Five studies included
the terms “mesenchymal stromal cells”AND “bone.” Two studies
included the terms “mesenchymal stromal cells” AND “bone re-
generation,” and seven studies included the terms “stem cells”
AND “bone regeneration.”

These studies are dedicated to the treatment of bone defects
and diseases, such as bone cysts, osteoarthritis, osteonecrosis,
spinal fusion, and atrophic nonunion fractures using human
MSC monocultures. Some of these studies are still recruiting
patients. To date, BM-MSCs are still the main source for clinical
trials as well as case reports, and reports on the use of coculture-
based constructs for clinical bone regeneration are lacking. Clinical
studies conducted so far have demonstrated that it is safe to
use human MSCs for bone regeneration, but the outcomes
are substantially less promising compared with those of animal
studies. In two patients, only 34.5% and 25.6% of bone regener-
ation (of the original defect volume) was found after fourmonths
whenBM-MSC-loadeddemineralizedbonematrixwas used to re-
store human alveolar cleft defects [72]. Meijer et al. observed
bone regeneration in 50% (3/6) of patients, and bone formation
was induced in only one patient by the tissue-engineered

construct when BM-MSCs seeded b-tricalcium phosphate gran-
ules were implanted in jaw defects. A remarkable finding of this
studywas that despite the lownumber of construct contributions
to clinical bone formation, parallel ectopic implantationswith the
constructs in nude mice showed bone formation in all specimens
[73]. The discrepancy between preclinical results and clinical out-
comes is likely explained by several causes. As mentioned, be-
cause of the unstandardized cell preparation protocol, the cell
populations usedareoftenheterogeneous,whichmakes compar-
ison among outcomes fromdifferent studies difficult. In addition,
the long-term survival and proliferation of implanted cells and to
what extent these cells can contribute to bone formation remain
largely unknown, especially in critical sized bone defects. In view
of this, cell tracing such as luciferase labeling enables real time in
vivo evaluation of the cells, which is particularly interesting to de-
termine the contribution and distribution of the implanted cells.
Finally, the comparison of bone regeneration mechanisms be-
tween animals andhumanbeings at amolecular level is necessary
to understand the underlying reasons further.

CONCLUSION

Bone regeneration in clinics is compromised in some cases, for
example, in patients with typical risk factors like smoking or di-
abetes, and the incidence of these risk factors is increasing from
5% to 10% (for a healthy population) up to 40% [74]. Cell-based
BTE/RM has emerged as an attractive approach for bone regen-
eration in preclinical studies, although no definite answer about
its use has been given for clinical studies. A standardized method

Table 2. In vivo preclinical studies involving human MSC transplantation (cocultures) in BTE/RM

Cell sources
(cell ratio and
medium) Scaffold Seeding density

In vitro
preculture

time

In vivo
time
(max)

Species and
repair sites

Evaluation
method

Efficacy of bone and vessel
formation (fold change,
coculture/monoculture)

BM-MSCs/ECs
(not clear, PM)

PLGA 13 106 /construct
(8.5 mm Ø, 2 mm H)

1 hr 12 wk Rat calvarium Histology Bone percentage (%):
33.0/23.0 (MSCs) = 1.4;
donor-derived vessels
percentage (%): 2.0/0.2
(MSCs) = 10.0 [86]

BM-MSCs/EPCs
(1:1, PM)

b-TCP 0.53 106/construct
(granule, 0.7–1.4 mm)

0 d 8 wk Rat femur Histology Bone percentage (%):
1.2/1.0 (MSCs) = 1.2; vessel
density (/mm2): 0.4/0.4
(MSCs) = 1.0 0.4/0.15
(EPCs) = 2.7 [87]

BM-MSCs/EPCs
(1:1, PM)

b-TCP 0.5 x 106/construct
(granule, 0.7–1.4 mm)

0 d 1 wk Rat femur Histology New bone mass:
7.2/5.4 (MSCs) = 1.3; vessel
density (/mm2): 3.2/0.45
(MSCs) = 7.1 3.2/1.3
(EPCs) = 2.5 [88]

BM-MSCs/ECs
(1:1, OM)

b-TCP 1.0 x 106/construct
(3.5 x 2 x 15mm)

2 wk 16 wk Rabbit ulna Histology Bone percentage (%):
37.0/29.0 (MSCs) = 1.3;
vessel percentage (%):
5.9/4.9 (MSCs) = 1.2 [89]

AT-MSCs/ECs
(2:1, OM)

PCL/PLGA/
b-TCP

0.3 x 106/construct
(8 mm Ø, 2 mm H)

2 d 12 wk Rat calvarium Micro-CT Bone percentage (%):
74.0/58.0 (MSCs) = 1.3 [90]

AT-MSCs/ECs
(1:1, OM)

Ti 1 x 106/construct
(5 mm Ø)

1 wk 8 wk Rat calvarium Histology Bone percentage (%):
44.0/151.0 (MSCs) = 0.3 [60]

Search conditions for Table 2:
Based on the search conditions from Table 1, additional search condition of (coculture* OR co-culture* OR co-seed* OR coseed* OR cotransplant* OR
co-transplant* OR co-implant*) OR (endothelial cell* OR endothelial progenitor cell*) was added.
Abbreviations: AT, adipose tissue; BM, bonemarrow; BTE, bone tissue engineering; ECs, endothelial cells; EPCs, endothelial progenitor cells; H, height;
MSC, mesenchymal stem cells; Ø, diameter; OM, osteogenic medium; PCL, polycaprolactone; PLGA, poly(lactic-co-glycolic acid); PM, proliferation
medium; RM, regenerative medicine; TCP, tricalcium phosphate; Ti, titanium.
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of using cell-based tissue engineering constructs in clinical work
contains a protocolized cell isolation and culture method; valid
characterization of the isolated cells, and efficient cell seeding
with an optimized cell source, scaffold type, and cell seeding
parameters (e.g., density, time, and volume). A proper prediffer-
entiation method and time are also needed.

Based on the promising outcomes from preclinical studies, in
which cell-based constructs (irrespective of monoculture and
cocultures) enhanced bone formation compared with acellular
constructs, and cocultures showed more pronounced vessel and

bone formation thanmonocultures, it is logical andstraightforward
to proceed the translational step frombench to bedside. Because
of the limited number of systematic clinical studies and the lack of
provenexaminationmethods (e.g., biopsy), very fewstudieswere
able to demonstrate the efficacy of cell-based strategies for BTE/
RM in a clinical setting. Therefore, a number of areas of ongoing
active research are directly relevant to the translation of cell-
based constructs for bone regeneration into clinics, including de-
velopment of bioreactor systems for standardized and scalable
cell expansion methods; scale up to clinically sized (large) bone

Table 3. Clinical studies using human MSC-based tissue-engineered constructs

Cell sources
and treatment Scaffold

Number of
patients Repair sites Evaluation method(s) Reported outcomes

BM-MSCs HA 3 Long bone defects
(1 tibia, 1 ulna,
1 humerus)

X-rays and
micro-CT scans

Abundant callus formation along the implants
and good integration at the interfaces with
the host bones 2 months after surgery [91]

BM-MSCs HA 4 Long bone (limb) X-rays and
micro-CT scans

No major complications occurred; complete
integration between implants and host
bone 5–7 months and maintained 6–7
years after surgery [92]

BM-MSCs
(with PRP)

Ti 1 Alveolar cleft Micro-CT scans Regenerated bone bridged the cleft after
6 months [93]

BM-MSCs DBM/Calcium
sulphate

2 Alveolar cleft Micro-CT scans There is 34.5% and 25.6% integrity of the bone
defects for the two patients [73]

BM-MSCs
(with fibrin
glue)

Ti 1 Mandible Dental CT scans Successful bone regeneration in large
segmental defects of the jaw [94]

BM-MSCs BCP 7 Sinus augmentation X-rays and
biopsy

The mean percentage of the newly formed
bone was 41%; bone height was 11 mm
after 1 year compared with the initial
height of 2 mm, with a successful rate of
93% (28/30) for dental implants [95]

BM-MSCs HA (particles) 6 Jaw X-rays and
biopsy

Bone regeneration was observed in 50% (3/6)
of the patients, and bone formation was
induced by the tissue-engineered
construct in only 1 patient [96]

BM-MSCs Allogenic
mandible

3 Mandible Micro-CT scans Bone healing was observed in 2 of the
3 patients [97]

AT-MSCs
(with BMP-2)

b-TCP 1 Maxilla X-rays Regenerated bone resembled mature
maxillary bone 2 months after surgery [98]

DP-MSCs Collagen 17 Mandible X-rays and
biopsy

Bone regeneration in the defects was
complete and stable 1 year after surgery [99]

Search conditions for Table 3:
(human mesenchymal stem cell* OR human stem cell* OR human mesenchymal stromal cell* OR human marrow stromal cell*) AND (clinic* OR case
report* OR clinical trial*) AND (bone tissue engineering OR bone regenerat* OR bone form*).
Abbreviations: AT, adipose tissue; BCP, biphasic calciumphosphate; BM,bonemarrow; BMP, bonemorphogenetic protein; CT, computed tomography;
DBM, demineralized bone matrix; DP, dental pulp; HA, hydroxyapatite; MSC, mesenchymal stem cells; PRP, platelet-rich-plasma; TCP, tricalcium
phosphate; Ti, titanium.

Table 4. Opportunities and threats for cell-based constructs in clinical application for BTE/RM

Opportunities Threats

Various cell sources available with osteogenic capacity Limited cell number for clinical cases in which there are large defects,
or for one-step surgery

Through expansion, sufficient cell numbers can be obtained Longer expansion may lead to cell deformation and decreased
differentiation capacity

Efficient cell seeding on scaffolds can be achieved before in vivo
implantation

Cell survival is compromised after in vivo implantation

Successful bone regeneration using cell-based constructs has been
demonstrated in preclinical studies

There have been less promising outcomes of bone regeneration using
cell-based constructs in clinics

In some clinical case reports using cell-based strategies for BTE/RM,
bone regeneration was observed

Because of the lack of a control group in studies and case reports, the
contribution of implanted cells cannot be ascertained

Abbreviations: BTE, bone tissue engineering; RM, regenerative medicine.
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constructswith potential for further integrationwith host tissues;
evaluation of engineered bone grafts in large animal models;
rapid establishment of vascularization through the implanted
bone graft; and marketing of off-the-shelf products. For the ben-
efit of patients, intraoperative graftmanufacture, also called one-
step surgery, in which the graft is assembled during the surgical
procedure, may be of interest. A prerequisite for this method
is obtaining sufficient cell numbers for cell seeding and bone re-
generation without expansion. Moreover, by using cocultures,
the needed number ofMSCs can be reduced while maintaining
equal vascularization and bone formation.

As an overview, the opportunities and threats for cell-based
tissue engineered constructs for clinical application in BTE/RM
are listed in Table 4. For clinical studies, several aspects should
be considered. There is a need for a reduction of the time lapse
from cell isolation to in vivo implantation to avoid long waiting
times and patient discomfort and ensure the multipotential dif-
ferentiation capacity of MSCs, which can be lost during (long-
term) expansion. Because of the immunomodulatory properties
ofMSCs [75], standardized off-the-shelf products containing allo-
geneic MSCs seem feasible. The contribution of implanted MSCs
to the regenerative process is still unclear because of the combi-
nation of osteoinductive scaffolds and/or growth factors and the
lack of control groups (e.g., bare scaffolds) in clinical trials. To de-
termine the regeneration efficacy of cell-based constructs, quan-
titative measurements should be performed, whereas the
current assessment for bone formation is mostly radiological ex-
amination (e.g., x-ray and micro-computed tomography). This
makes it difficult to distinguish between newly formed bone
and the implanted scaffolds, especially when radiopaque scaf-
folds are used. It is necessary to identify donors with appropriate

osteogenic capacity before in vivo implantation. There is no cer-
tain correlation between osteogenic capacity in vitro and bone
formation in vivo [76], although researchers are seeking indices
to help predict the bone formation capacity. Longer follow-up
periods are recommended to evaluate the long-term safety and
efficacy of human MSC-based tissue-engineered constructs in
bone regeneration.
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